2 Nov 2010

aNtenA gRid & oMNi

Antenna Grid Wifi 2,4 GHz dengan Gain 21 Db, sangat cocok digunakan untuk Antenna Wifi Anda. Bisa digunakan untuk Point to Point, atau Klien dari Akses Point anda. Sangat cocok digunakan untuk antenna Klien Rt-Rw Net anda sehingga bisa menekan biaya Investasi awal klien anda.
Antena grid memiliki kekuatan sinyal hingga 24 dB, sementara antena parabolic hingga 18 dB.

A. Bahan

1. Alminium holo diameter 1 cm

a. Untuk lingkaran luar antena dengan panjang = 300 cm

b. Untuk Jari-jari antena sebanyak 9 buah x 48,5 cm = 430,2 cm

2. Pipa almunium Æ 3/8 inch

a. Untuk lingkaran dalam = 190 cm

b. Untuk lingkaran bawah = 36 cm

c. Tiang focus

3. Mesh almunium dengan ukuran 100 cm x 200 cm dibagi menjadi 6 bagian dalam bentuk segitiga dengan ukuran 50 x 55 x 5




INSTALLASI WIRELESS LAN

Peralatan

1. Kompas dan peta topografi

2. Penggaris dan busur derajat

3. Pensil, penghapus, alat tulis

4. GPS, altimeter, klinometer

5. Kaca pantul dan teropong

6. Radio komunikasi (HT)

7. Orinoco PC Card, pigtail dan PCI / ISA adapter

8. Multimeter, SWR, cable tester, solder, timah, tang potong kabel

9. Peralatan panjat, harness, carabiner, webbing, cows tail, pulley

10. Kunci pas, kunci ring, kunci inggris, tang (potong, buaya, jepit), obeng set, tie rap, isolator gel, TBA, unibell

11. Kabel power roll, kabel UTP straight dan cross, crimping tools, konektor RJ45

12. Software AP Manager, Orinoco Client, driver dan AP Utility Planet, firmware dan operating system (NT, W2K, W98 / ME, Linux, FreeBSD + utilitynya)

Survey Lokasi

1. Tentukan koordinat letak kedudukan station, jarak udara terhadap BTS dengan GPS dan kompas pada peta

2. Perhatikan dan tandai titik potensial penghalang (obstructure) sepanjang path

3. Hitung SOM, path dan acessories loss, EIRP, freznel zone, ketinggian antena

4. Perhatikan posisi terhadap station lain, kemungkinan potensi hidden station, over shoot dan test noise serta interferensi

5. Tentukan posisi ideal tower, elevasi, panjang kabel dan alternatif seandainya ada kesulitan dalam instalasi

6. Rencanakan sejumlah alternatif metode instalasi, pemindahan posisi dan alat

Pemasangan Konektor

1. Kuliti kabel coaxial dengan penampang melintang, spesifikasi kabel minimum adalah RG 8 9913 dengan perhitungan losses 10 db setiap 30 m

2. Jangan sampai terjadi goresan berlebihan karena perambatan gelombang mikro adalah pada permukaan kabel

3. Pasang konektor dengan cermat dan memperhatikan penuh masalah kerapian

4. Solder pin ujung konektor dengan cermat dan rapi, pastikan tidak terjadi short

5. Perhatikan urutan pemasangan pin dan kuncian sehingga dudukan kabel dan konektor tidak mudah bergeser

6. Tutup permukaan konektor dengan aluminium foil untuk mencegah kebocoran dan interferensi, posisi harus menempel pada permukaan konektor

7. Lapisi konektor dengan aluminium foil dan lapisi seluruh permukaan sambungan konektor dengan isolator TBA (biasa untuk pemasangan pipa saluran air atau kabel listrik instalasi rumah)

8. Terakhir, tutup seluruh permukaan dengan isolator karet untuk mencegah air

9. Untuk perawatan, ganti semua lapisan pelindung setiap 6 bulan sekali

10. Konektor terbaik adalah model hexa tanpa solderan dan drat sehingga sedikit melukai permukaan kabel, yang dipasang dengan menggunakan crimping tools, disertai karet bakar sebagai pelindung pengganti isolator karet

Pembuatan POE

1. Power over ethernet diperlukan untuk melakukan injeksi catu daya ke perangkat Wireless In A Box yang dipasang di atas tower, POE bermanfaat mengurangi kerugian power (losses) akibat penggunaan kabel dan konektor

2. POE menggunakan 2 pair kabel UTP yang tidak terpakai, 1 pair untuk injeksi + (positif) power dan 1 pair untuk injeksi – (negatif) power, digunakan kabel pair (sepasang) untuk menghindari penurunan daya karena kabel loss

3. Perhatikan bahwa permasalahan paling krusial dalam pembuatan POE adalah bagaimana cara mencegah terjadinya short, karena kabel dan konektor power penampangnya kecil dan mudah bergeser atau tertarik, tetesi dengan lilin atau isolator gel agar setiap titik sambungan terlindung dari short

4. Sebelum digunakan uji terlebih dahulu semua sambungan dengan multimeter

Instalasi Antena

1. Pasang pipa dengan metode stack minimum sampai ketinggian 1st freznel zone terlewati terhadap obstructure terdekat

2. Perhatikan stabilitas dudukan pipa dan kawat strenght, pasang dudukan kaki untuk memanjat dan anker cows tail

3. Cek semua sambungan kabel dan konektor termasuk penangkal petir bila ada

4. Pasang antena dengan rapi dan benar, arahkan dengan menggunakan kompas dan GPS sesuai tempat kedudukan BTS di peta

5. Pasang kabel dan rapikan sementara, jangan sampai berat kabel menjadi beban sambungan konektor dan mengganggu gerak pointing serta kedudukan antena

6. Perhatikan dalam memasang kabel di tower / pipa, jangan ada posisi menekuk yang potensial menjadi akumulasi air hujan, bentuk sedemikian rupa sehingga air hujan bebas jatuh ke bawah

Instalasi Perangkat Radio

1. Instal PC Card dan Orinoco dengan benar sampai dikenali oleh OS tanpa konflik dan pastikan semua driver serta utility dapat bekerja sempurna

2. Instalasi pada OS W2K memerlukan driver terbaru dari web site dan ada di CD utility kopian, tidak diperlukan driver PCMCIA meskipun PNP W2K melakukannya justru deteksi ini menimbulkan konflik, hapus dirver ini dari Device Manager

3. Instalasi pada NT memerlukan kecermatan alokasi alamat IO, IRQ dan DMA, pada BIOS lebih baik matikan semua device (COM, LPT dll.) dan peripheral (sound card, mpeg dll.) yang tidak diperlukan

4. Semua prosedur ini bisa diselesaikan dalam waktu kurang dari 30 menit tidak termasuk instalasi OS, lebih dari waktu ini segera jalankan prosedur selanjutnya

5. Apabila terus menerus terjadi kesulitan instalasi, untuk sementara demi efisiensi lakukan instalasi dibawah OS Win98 / ME yang lebih mudah dan sedikit masalah

6. Pada instalasi perangkat radio jenis Wireless In A Box (Mtech, Planet, Micronet dlll.), terlebih dahulu lakukan update firmware dan utility

7. Kemudian uji coba semua fungsi yang ada (AP, Inter Building, SAI Client, SAA2, SAA Ad Hoc dll.) termasuk bridging dan IP Addressing dengan menggunakan antena helical, pastikan semua fungsi berjalan baik dan stabil

8. Pastikan bahwa perangkat Power Over Ethernet (POE) berjalan sempurna

Pengujian Noise

1. Bila semua telah berjalan normal, install semua utility yang diperlukan dan mulai lakukan pengujian noise / interferensi, pergunakan setting default

2. Tanpa antena perhatikan apakah ada signal strenght yang tertangkap dari station lain disekitarnya, bila ada dan mencapai good (sekitar 40 % – 60 %) atau bahkan lebih, maka dipastikan station tersebut beroperasi melebihi EIRP dan potensial menimbulkan gangguan bagi station yang sedang kita bangun, pertimbangkan untuk berunding dengan operator BTS / station eksisting tersebut

3. Perhatikan berapa tingkat noise, bila mencapai lebih dari tingkat sensitifitas radio (biasanya adalah sekitar – 83 dbm, baca spesifikasi radio), misalnya – 100 dbm maka di titik station tersebut interferensinya cukup tinggi, tinggal apakah signal strenght yang diterima bisa melebihi noise

4. Perhitungan standar signal strenght adalah 0 % – 40 % poor, 40 % - 60 % good, 60 % - 100 % excellent, apabila signal strenght yang diterima adalah 60 % akan tetapi noisenya mencapai 20 % maka kondisinya adalah poor connection (60 % - 20 % - 40 % poor), maka sedapat mungkin signal strenght harus mencapai 80 %

5. Koneksi poor biasanya akan menghasilkan PER (packet error rate – bisa dilihat dari persentasi jumlah RTO dalam continous ping) diatas 3 % – 7 % (dilihat dari utility Planet maupun Wave Rider), good berkisar antara 1 % - 3 % dan excellent dibawah 1 %, PER antara BTS dan station client harus seimbang

6. Perhitungan yang sama bisa dipergunakan untuk memperhatikan station lawan atau BTS kita, pada prinsipnya signal strenght, tingkat noise, PER harus imbang untuk mendapatkan stabilitas koneksi yang diharapkan

7. Pertimbangkan alternatif skenario lain bila sejumlah permasalahan di atas tidak bisa diatasi, misalkan dengan memindahkan station ke tempat lain, memutar arah pointing ke BTS terdekat lainnya atau dengan metode 3 titik (repeater) dll.

Perakitan Antena

1. Antena microwave jenis grid parabolic dan loop serta yagi perlu dirakit karena terdiri dari sejumlah komponen, berbeda dengan jenis patch panel, panel sector maupun omni directional

2. Rakit antena sesuai petunjuk (manual) dan gambar konstruksi yang disertakan

3. Kencangkan semua mur dan baut termasuk konektor dan terutama reflektor

4. Perhatikan bahwa antena microwave sangat peka terhadap perubahan fokus, maka pada saat perakitan antena perhatikan sebaik-baiknya fokus reflektor terhadap horn (driven antena), sedikit perubahan fokus akan berakibat luas seperti misalnya perubahan gain (db) antena

5. Beberapa tipe antena grid parabolic memiliki batang extender yang bisa merubah letak fokus reflektor terhadap horn sehingga bisa diset gain yang diperlukan

Pointing Antena

1. Secara umum antena dipasang dengan polarisasi horizontal

2. Arahkan antena sesuai arah yang ditunjukkan kompas dan GPS, arah ini kita anggap titik tengah arah (center beam)

3. Geser antena dengan arah yang tetap ke kanan maupun ke kiri center beam, satu per satu pada setiap tahap dengan perhitungan tidak melebihi ½ spesifikasi beam width antena untuk setiap sisi (kiri atau kanan), misalkan antena 24 db, biasanya memiliki beam width 12 derajat maka, maksimum pergeseran ke arah kiri maupun kanan center beam adalah 6 derajat

4. Beri tanda pada setiap perubahan arah dan tentukan skornya, penentuan arah terbaik dilakukan dengan cara mencari nilai average yang terbaik, parameter utama yang harus diperhatikan adalah signal strenght, noise dan stabilitas

5. Karena kebanyakan perangkat radio Wireless In A Box tidak memiliki utility grafis untuk merepresentasikan signal strenght, noise dsb (kecuali statistik dan PER) maka agar lebih praktis, untuk pointing gunakan perangkat radio standar 802.11b yang memiliki utility grafis seperti Orinoco atau gunakan Wave Rider

6. Selanjutnya bila diperlukan lakukan penyesuaian elevasi antena dengan klino meter sesuai sudut antena pada station lawan, hitung berdasarkan perhitungan kelengkungan bumi dan bandingkan dengan kontur pada peta topografi

7. Ketika arah dan elevasi terbaik yang diperkirakan telah tercapai maka apabila diperlukan dapat dilakukan pembalikan polarisasi antena dari horizontal ke vertical untuk mempersempit beam width dan meningkatkan fokus transmisi, syaratnya kedua titik mempergunakan antena yang sama (grid parabolic) dan di kedua titik polarisasi antena harus sama (artinya di sisi lawan polarisasi antena juga harus dibalik menjadi vertical)

Pengujian Koneksi Radio

1. Lakukan pengujian signal, mirip dengan pengujian noise, hanya saja pada saat ini antena dan kabel (termasuk POE) sudah dihubungkan ke perangkat radio

2. Sesuaikan channel dan nama SSID (Network Name) dengan identitas BTS / AP tujuan, demikian juga enkripsinya, apabila dipergunakan otentikasi MAC Address maka di AP harus didefinisikan terlebih dahulu MAC Address station tersebut

3. Bila menggunakan otentikasi Radius, pastikan setting telah sesuai dan cobalah terlebih dahulu mekanismenya sebelum dipasang

4. Perhatikan bahwa kebanyakan perangkat radio adalah berfungsi sebagai bridge dan bekerja berdasarkan pengenalan MAC Address, sehingga IP Address yang didefinisikan berfungsi sebagai interface utility berdasarkan protokol SNMP saja, sehingga tidak perlu dimasukkan ke dalam tabel routing

5. Tabel routing didefinisikan pada (PC) router dimana perangkat radio terpasang, untuk Wireless In A Box yang perangkatnya terpisah dari (PC) router, maka pada device yang menghadap ke perangkat radio masukkan pula 1 IP Address yang satu subnet dengan IP Address yang telah didefinisikan pada perangkat radio, agar utility yang dipasang di router dapat mengenali radio

6. Lakukan continuos ping untuk menguji stabilitas koneksi dan mengetahui PER

7. Bila telah stabil dan signal strenght minimum good (setelah diperhitungkan noise) maka lakukan uji troughput dengan melakukan koneksi FTP (dengan software FTP client) ke FTP server terdekat (idealnya di titik server BTS tujuan), pada kondisi ideal average troughput akan seimbang baik saat download maupun up load, maksimum troughput pada koneksi radio 1 mbps adalah sekitar 600 kbps dan per TCP connection dengan MTU maksimum 1500 bisa dicapai 40 kbps

8. Selanjutnya gunakan software mass download manager yang mendukung TCP connection secara simultan (concurrent), lakukan koneksi ke FTP server terdekat dengan harapan maksimum troughput 5 kbps per TCP connection, maka dapat diaktifkan sekitar 120 session simultan (concurrent), asumsinya 5 x 120 = 600

9. Atau dengan cara yang lebih sederhana, digunakan skala yang lebih kecil, 12 concurrent connection dengan trouhput per session 5 kbps, apa total troughput bisa mencapai 60 kbps (average) ? bila tercapai maka stabilitas koneksi sudah dapat dijamin berada pada level maksimum

10. Pada setiap tingkat pembebanan yang dilakukan bertahap, perhatikan apakah RRT ping meningkat, angka mendekati sekitar 100 ms masih dianggap wajar

antena yagi

Ada yang tau tentang antena Yagi..?? ato Yagi uda, Itu lho yang bentuknya mirip duri ikan ato yang sering buat antena TV di rumah. Antena yagi sendiri itu ditemukan oleh 2 orang profesor asal jepang yang bernama Prof. Hidetsugu YAGI dan Shintaro UDA dari Tokyo University. Ada banyak fungsi sebenarnya antena yagi itu selain untuk menerima gelombang UHF untuk TV, antena yagi juga bisa untuk menerima gelombang wifi dari internet hotspot, malahan juga sering digunakan untuk nembak hotspot orang, trus ada juga yang bisa menerima gelombang dari pemancar CDMA jadi kalau didaerah yang sinyal handphonenya lemah dapat menggunakan antena jenis yagi untuk memperkuat sinyal yang masuk ke handphone.

Dibawah ini ada salah satu contoh kegunaan antena yagi yaitu untuk menerima gelombang wifi dengan kriteria pembuatan sbb :

.

1. Menentukan Spesifikasi Antena

  • Frekuensi 2400 MHz – 2500 MHz
  • Gain > 15 dBi
  • SWR <>
  • Zo 50 Ω

2. Menentukan dimensi antenna

  • Panjang 100 cm
  • Lebar 10 cm
  • Jumlah Director 18 buah

Direktor

Panjang

Direktor

Panjang

Direktor

Panjang

1

6.3 cm

7

6.0 cm

13

5.9 cm

2

6.2 cm

8

6.0 cm

14

5.9 cm

3

6.2 cm

9

6.0 cm

15

5.8 cm

4

6.1 cm

10

5.9 cm

16

5.8 cm

5

6.1 cm

11

5.9 cm

17

5.8 cm

6

6.1 cm

12

5.9 cm

18

5.8 cm

  • Jumlah Driven 1 buah ( 6.25 cm )
  • Jumlah Reflektor 1 buah ( 10 cm )

3. Melakukan pemotongan bahan sesuai dengan ukuran yang telah ditentukan

4. Membuat Driven dengan jenis Dipole Sleve ½ λ dengan alasan karena mempunya impedansi ( Zo ) 50 Ω sehingga sesuai dengan impedansi ( Zo ) dari kabel Koaksial yang digunakan.

Driven terbuat dari kabel koaksial 50 Ω dengan panjang total ½ λ yang kemudian ¼ λ nya dikupas baik innernya ataupun outernya dan sisanya dibiarkan terbungkus dengan outernya. Setelah jadi maka driven ditempelkan pada konektor N-Female dengan cara disolder.

5. Setelah driven dan antenna jadi maka selanjutnya tinggal melakukan pengukuran untuk mencari nilai SWR dan Bandwith dengan menggunakan alat Network Analyzer, jika nilai SWR atau Bandwith belum pas maka dicari sampai sesuai dengan yang diharapkan salah satunya dengan cara mengikir driven untuk memperpendek λ atau dengan memperbaiki solderan.

6. Setelah pengukuran dalam dilakukan dan mendatkan hasil yang sesuai dengan yang diinginkan yaitu SWR <>

.

.

Blue Print Antena Yagi for Wifi with 18 Director

.

.

Dimensi Antena Yagi for Wifi with 18 Director

Director Number

Length

Spacing

Number

cms.

cms.

1

6.3

0.9

2

6.2

2.2

3

6.2

2.6

4

6.1

3.1

5

6.1

3.4

6

6.1

3.7

7

6.0

3.9

8

6.0

4.0

9

6.0

4.2

10

5.9

4.4

11

5.9

4.6

12

5.9

4.7

13

5.9

4.8

14

5.9

4.8

15

5.8

4.9

16

5.8

4.9

17

5.8

4.9

18

5.8

4.9

Reflector Length (cm)

6.7

Reflector Spacing (cm)

2.9

Driven Element (cm)

6.5

.

.

Spesification

Frequency (MHz).

2450.0 Mhz

Wavelength (cm).

12.5

Boom Diameter (cm).

1

Element Diameter (mm).

0.2

Boom Length (Metres)

1

Gain (dBd)

15.5

Useable bandwidth

2401 to 2499 MHz

SWR

<>

Zo

50 Ohm

Panjang Director

150 cm

Panjang Antena

100 cm

.

.

Bahan – bahan

1. Pipa alumunium persegi 1 Meter

2. Pipa alumunium 0.2 mm silinderer 1,5 Meter

3. Kabel Coaxial 50 Ohm 0,1 Meter

4. Konektor N-Female 1 buah

5. Pipa Paralon 0,15 Meter

6. Tutup Paralon 1 buah

.

Mungkin kriteria diatas bisa kurang akurat saat benar – benar diterapkan menjadi sebuah antena tetapi semua data – data diatas adalah hasil riset yang kemungkinan ada banyak perbedaan dengan hasil orang lain. Maka hanya sekedar saran saja untuk mendaoatkan hasil yang maksimal dapat disesuaikan dengan kondisi lapangan.

Contoh Gambar Nyata Yagi Buatan Sendiri

yagi

Yang dibungkus paralon itu namanya Driven ( Catuan )


from: http://ekoari.wordpress.com

1 Nov 2010

pengertian antena omni

ini adl antena termudah yg bisa dibuat dengan penguatan sekitar 3-4 dBi tergantung tuning dan nilai2 element yg ada.antenna ini dibuat dr kawat copper (tembaga) atau brass (kuningan) dan mempunyai sudut elevasi reflektor 30* dan mempunyai arah pancaran ke segala arah “omnidirectional” kira2 gambarnya seperti ini…

Part List

-satu konektor tipe N female dgn 4 lobang sekitar,direkomendasikan mempunyai teflon insulasi diantara outer dan inner konektor.

-20 cm tembaga atau kuningan berbentuk batang dgn diameter 2mm

Konstruksi

1.dengan tang potong kawat yg dipakai menjadi 5 bagian masing2 4 cm panjangnya.

2.dgn kikir sedang (permukaan kikir) ratakan ke 4 bagian yg berlubang pd konektor N tsb sehingga memudahkan kita menyolder bagian reflektor

3.dengan solder high power (yg mempunyai panas 80 watt minimal) solder ke empat batang kawat yg mau dipake di ke 4 sisi konektor tsb,hati2! panas yg cukup tinggi bisa melelehkan insulasi teflon yg ada di antara titik tengah konektor.(bagian yg berwarna putih susu)

4.tekuk 0.5 cm pd ujung kawat (4 buah yg ditekuk) dgn sudut 90 derajat,hati2 dengan konstruksi yg sedikit rumit ini

sesudah terpasang di keempat sisi konektor N,mk anda bisa solder bagian “hot wire” yg berfungsi sbg antena yg sesungguhnya dgn hati2 dan tentu saja rapi bukan..?

kemudian rapikan jg ujung bagian bawah yg ada di bagian konektor N

kemudian dengan sebuah teknik “jembatan keledai” kita gambar sudut 30 derajat dan tempel pd dinding utk mengukur ketepatan sudut antena yg kita buat…

kemudian potong dgn tepat 3.05 cm radial (reflektor= yg tertempel pd ke empat sudut konektor N) dan central wire (yg tersolder di tengah konektor) ini perlu kehati2an dan ketepatan tinggi sebab kita akan bekerja pd freq yg amat tinggi! mk semakin tinggi suatu freq,akan semakin kritis pula nilai2 yg ada pd pembuatan antena tsb…

TIPS:

pembuatan ini di alokasikan pd channel 6 (2.44 Ghz) atau tepat pd titik tengah pd freq channel yg ada (13 channel).saran terbaik adl jangan memotong dulu bagian tengah sepanjang 3.0 cm,tp biarkan sepanjang apa adanya dan kurangi tiap 0.1 cm dan ukur besaran signal dgn memaki software semacam Netstumbler.ini disebut “tuning and matching” jd kepanjangan yg dikehendaki hendaklah fixed dgn channel AP or wlan yg akan anda tuju.anda bisa melihat tuning by cutting ini sukses bila besaran signal akan membesar pd titik potong yg dikehendaki.

semakin pendek panjang iner wire semakin tinggi channel yg bisa diakses (dlm hal optimum signal receive maupun transmit) dan semakin rendah chanel yg dipakai semakin panjang pula iner wire….

perhitungan omni

I. Omni Directional Antenna
a. Rubber Ducky Antenna

Banyak ditemukan diperalatan 2.4GHz 802.11 wireless network, seperti access point dan router wireless.
Penambahan gain rata-rata untuk antenna seperti ini sekitar 2-2.2dbi (www.martybugs.net)
Salah satu cara untuk menambahkan kekuatan daya dari wireless omni directional antenna / rubber ducky antenna ini adalah dengan menambahkan semacam parabola tepat di belakang antena, sehingga antena yang tadinya menyebar luas dapat diarahkan ke dalam salah satu area tertentu. Gain yang didapat sekitar 10 to 12 dB.
b. 360 Degree Omni

Gain yang didapat adalah 5-6 dbi.
2. Directional Antenna
a. Directional Yagi

Gain yang didapat +- 15 dbi.
b. Directional Sector

Banyak digunakan di menara-menara telekomunikasi. Lebar penyebaran berkisar 90-180 derajat. Antena ini baik digunakan untuk mengjangkau 360 derajat area, namun tidak mengingingkan semuanya mengarah ke satu antena.
c. Directional Patch

Gain yang didapat sekitar 18dbi.
Penyebaran jangkauan lebih sempit daripada antena yagi.
Mudah disembunyikan
d. Directional Parabolic

Dapat menjangkau daerah yang jauh.
Dapat mencapai 16 Km dengan gain 22 dbi (www.seattlewireless.com).
e. Directional Dish

Gain yang didapat 16-24 dbi.
digunakan di kantor saya . Dengan menggunakan standard 802.11b 11Mbps, antena Directional Dish 18dbi, bridge PoE jarak dibawah 500 meter dan LoS. Speed yang didapat berkisar 2-3 Mbps bisa jadi referensi bagi kawan-kawan sekalian.
Antena-antena diatas merupakan antena standard yang sering digunakan banyak orang, tidak tertutup kemungkinan masih banyak jenis-jenis antena yang ada dengan melakukan penggabungan ataupun modifikasi dari bentuk-bentuk antena diatas.
Pengertian dbi, jarak jangkauan, dan luas jangkauan dapat dicari di Om Google, karena saya sendiri masih memahaminya. (bagi yang mau berbagi ilmu ke saya boleh :p).
Gambar-gambar diatas didapat dari website www.seattlewireless.net dan www.martybugs.net segala hak cipta ada di tangan mereka.

6 Responses to “Tipe-tipe antenna wireless yang perlu diketahui! (part 1)”
1. Terima kasih informasinya…. Pak, informasinya.
Mulyadi said this on August 27th, 2007 at 7:45 pm
2. yup. ngak pp sekalian untuk tugas saya, artikel ini juga akan berlanjut lagi kok
nalpha said this on August 28th, 2007 at 2:20 pm
3. gue tambahin dikit ya mar:
Dalam sistem wireless, antena digunakan untuk meng-konversi gelombang listrik menjadi gelombang elektromagnit. Besar enerji antena dapat memperbesar sinyal terima dan kirim, yang disebut sebagai Antenna Gain yang diukur dalam :
dBi : relatif terhadap isotropic radiator
dBd: relatif terhadap dipole radiator
dimana 0 dBd = 2,15 dBi
RADIATED POWER
Pengaturan yang dilakukan oleh FCC harus memenuhi ketentuan dari besarnya daya yang keluar dari antena. Daya ini diukur berdasarkan dua cara :
1.Effective Isotropic Radiated Power (EIRP)
diukur dalam dBm = daya di input antena [dBm] + relatif antena gain [dBi]
2.Effective Radiated Power (ERP) diukur dalam dBm = daya di input antena [dBm] + relatif antena gain [dBd]
KEHILANGAN DAYA
Pada sistem wireless, ada banyak faktor yang menyebabkan kehilangan kekuatan sinyal, seperti kabel, konektor, penangkal petir dan lainnya yang akan menyebabkan turunnya unjuk kerja dari radio jika dipasang sembarangan
Pada radio yang daya-nya rendah seperti 802.11b, setiap dB adalah sangat berarti, dan harus diingat “3 dB Rule”.
Setiap kenaikan atau kehilangan 3 dB, kita akan mendapatkan dua kali lipat daya atau kehilangan setengahnya .
-3 dB = 1/2 daya
-6 dB = 1/4 daya
+3 dB = 2x daya
+6 dB = 4x daya
Sumber yang menyebabkan kehilangan daya dalam sistem wireless : free space, kabel, konektor, jumper, hal-hal yang tidak terlihat.
3dB Rule bisa diterapkan secara prak-tis dengan bantuan antena
Access Point dengan standar 802.11b mempunyai penguatan 13dB untuk jarak 300 meter, maka kalau kita menggunakan antena 15dB (total 28dB) rumusannya menjadi :
13 + 3 dB – jaraknya menjadi 600 meter
16 + 3 dB – jaraknya menjadi 1,2 KM
19 + 3 dB – jaraknya menjadi 2,4 KM
21 + 3 dB – jaraknya menjadi 4,8 KM
24 + 3 dB – jaraknya menjadi 9,6 KM
1dB dianggap loss ….
MENGENAI KEKUATAN SINYAL :
Signal Propagation
Sinyal yang meninggalkan antena, maka akan merambat dan menghilang di udara. Pemilihan antena akan menentukan bagaimana jenis rambatan yang akan terjadi.
Pada 2,4 GHz sangat penting jika kita memasang kedua perangkat pada jalur yang bebas dari halangan. Jika rambatan sinyal terganggu, maka penurunan kwalitas sinyal akan terjadi dan mengganggu komunikasinya.
Pohon, gedung, tanki air, dan tower adalah perangkat yang sering mengganggu rambatan sinyal
Kehilangan daya terbesar dalam sistem wireless adalah Free Space Propagation Loss. Free Space Loss dihitung dengan rumus :
FSL(dB) = 32.45 + 20 Log10 F(MHz) + 20 Log10 D(km)
Jadi Free Space Loss pada jarak 1 km yang menggunakan frekwensi 2.4 GHz :
FSL(dB) = 32.45 + 20 Log10 (2400) + 20 Log10 (1)
= 32.45 + 67.6 + 0
= 100.05 dB
MENGENAI ANTENA :
Pola Radiasi Antena
Parameter umum :
main lobe (boresight)
half-power beamwidth (HPBW)
front-back ratio (F/B)
pattern nulls
Biasanya, diukur pada dua keadaan :
Vector electric field yang mengacu pada E-field
Vector magnetic field yang mengacu pada H-field
POLARISASI
Polarisasi antena relatif terhadap E-field dari antena.
Jika E-field-nya horisontal, maka antenanya Horizontally Polarized.
Jika E-field vertikal, maka antenanya Vertically Polarized.
Polarisasi apapun yang dipilih, antena pada satu jaringan RF harus memiliki polarisasi yang sama
Polarisasi dapat dimanfaatkan untuk :
- Meningkatkan isolasi dari sinyal yang tidak diinginkan (Cross Polarization Discrimination (x-pol) biasanya sekitar 25 dB)
- Mengurangi interferensi
- Membantu menentukan satu daerah pelayanan tertentu
IMPEDENSI ANTENA
Impedansi yang cocok akan menghasilkan pemindahan daya yang maksimum. Antena juga berfungsi sebagai matching load-nya transmitter (50 Ohms)
Voltage Standing Wave Ratio (VSWR) adalah satuan yang menunjukan sampai dimana antena sesuai (match) dengan jalur transmisi yang dikirimnya.
RETURN LOSS
Return Loss berhubungan dengan VSWR, yaitu mengukur daya dari sinyal yang dipantulkan oleh antena dengan daya yang dikirim ke antena.
Semakin besar nilainya (dalam satuan dB), semakin baik. Angka 13.9dB sama dengan VSWR 1,5:1. Return Loss 20dB adalah nilai yang cukup bagus, dan setara dengan VSWR of 1,2:1

Perhitungan Untuk Membuat Antenna Sendiri
Rumus yang digunakan oleh Jason Hecker (jason@air.net.au) banyak di ambil dari Bab
19 dari ARRL Antenna Handbook (http://www.arrl.org) di mana kita akan melihat cukup
banyak contoh disain antenna helical, termasuk cara mengukur kinerjanya.
Rumus antenna helical di ambil dari halaman 19-23 ARRL Antenna Handbook tertera di
bawah ini.
C
circumference of winding
S
axial length of one turn
G = 0.8 to 1.1
diameter of ground plane / reflector
C
circumference is pi times the diameter
Diameter dari lilitan biasanya tetap, dengan pipa pralon 40 mm maka diameter lilitan
adalah 42 mm. Jika frekuensi yang kita gunakan adalah (2.425GHz) maka panjang
gelombang = 0.123711 meter.
C
= 0.13195m
= 1.066
Jika kita ukur, ternyata S
30 C
out of range. Tapi tampaknya bukan masalah yang fatal.
________________________________________
Page 21
S
Diameter ground plane G = 1.05 = 0.130m
Gain dari antenna dalam dBi di definisikan sebagai:
Gain = 11.8 + 10log10(C
* n * S
dimana n adalah jumlah lilitan.
Gain = 11.8 + 10log10(1.066 * 1.066 * 13 *
0.31830)
= 18.5dBi
Pada tabel di bawah terlihat dengan jelas bahwa
gain
antenna
akan
bertambah
dengan
menambahkan jumlah lilitan. Kira-kira kenaikan
3dB akan di peroleh dengan men-dobel jumlah lilitan. Kira-kira 13 lilitan pas untuk
panjang pipa 0.55 meter & merupakan kompromi yang baik antara panjang vs. gain.
Pada card 801.11 yang banyak dipasaran umumnya kita bisa menset frekuensi yang
digunakan sebanyak 11 channel (FCC US). Oleh karena itu anda mungkin ingin
mengubah C
untuk frekuensi tempat kita bekerja.
Hal lain yang perlu diperhatikan dalam antenna adalah lebar beam. Lebar beam
biasanya di hitung menggunakan pada saat daya 50% (3 dB) lebih rendah daripada
daya di pusatnya. Rumus / perhitungannya adalah:
Half Power Beam Width = 52 / (C
= 52 / (1.066 * sqrt(13 * 0.31830))
= 23.98 derajat

Artikel yang satu ini adalah artikel yang saya ambil dari sumber yang baru walaupun isinya tetap sama saja namun saya harap artikel yang kedua ini bisa mencerahkan anda-anda yang lapar akan ilmu GBU
ANTENA KALENG (pertemuan pertama)

Written by TPOTC Surabaya
Monday, 06 February 2006
Sekelumit berita dari pertemuan kemaren (Gedung Teknik Elektro) sebenarnya masih banyak kekurangan. Baik dari segi alat yang pinjam sana sini dan keterbatasan alat penunjang lainnya menyebabkan hasil pengamatan kurang maksimal. Tetapi hal itu tidak menyurutkan semangat belajar rekan rekan yang ada di Surabaya. Berikut spesifikasi alat yang kami gunakan :1. Linksys WRT54
2. PCMCIA Orinoco
3. Kaleng susu procal (diameter 12,7 cm) dengan panjang 17 cm.
4. Kabel pigtail
5. Kabel tembaga 2,5 mm
6. N Female
7. UPS
8. PC
9. Netstumbler
Target yang dituju nggak muluk muluk asal bisa ngelink itu udah cukup. Masalahnya mau test jauh nggak ada laptop nganggur hiks sedih…….Kaleng sengaja nggak dipotong murni 17 cm. Jadi maaf kalo hasilnya kurang maksimal.

Pengamatan dengan cara membandingkan SNR (Signal To Noise Ratio) antara antena omni dan antena kaleng. Jika di sisi Linksys dipasang antenna omni sinyal cenderung tidak stabil, Sedangkan dengan menggunakan antenna kaleng cenderung lebih stabil. Sekali lagi maaf tiang dan teropong (binocular) belum ada jadi sinyal kadang naik kadang turun tergantung pegangan. Kalo ada GPS malah asyik….soalnya untuk pengambilan data (keperluan penelitian) dibutuhkan kondisi ideal……hiks malah nggak punya.

Gambar kayak diatas tuh….hanya pigtail nempel di kaleng. Penelitian nggak hanya sampai itu saja. Sekarang client diberi pigtail untuk ditambahan antenna kaleng. Maka didapat hasil seperti berikut.

Selisih Noise antara yang menggunakan kaleng dengan yang tidak menggunakan kaleng sangat significant yaitu sekitar 6 dBm. Ok PR buat kita yang ada di Surabaya dan temen temen yang juga oprek wireless untuk penelitian.
1. Butuh Laptop buat uji coba jarak jauh + 2 UPS
2. Teropong atau GPS
3. Tiang penyanggah yang flexibel
Special Thx :
1. Konco-konco yang support acara: Pak Hari dan Mas Hari (ayasayasen)
2. Iro (dan penghuni kost Semolowaru Indah)
3. Penghuni Lab

Pembuatan antena parabolic, omni dan rotena
Antena parabolicantena parabolic adalah antena yang menyerupai seperti parabole hanya saja antena parabolic dibuat dari alumunium dan cara pembuatannya singkatalat dan bahan yang dibutuhkan berserta fungsinya-bor listrik untuk menaruh paku rivet-tang rivet untuk merivet alumunium-paku rivet untuk menempelkan alumunium-obenk minus untuk menutar mur jenis minus-mur unutuk mengencangkan sisi-sisi antena-alat grinda untuk membengkokkan alunium-soldier untuk menyambungkan kabel dengan konnector-alumunium flat untuk membuat antenanya di dalam pipa-hitsring untuk melapisi kabel picrtail-pipa kapiler AC untuk menaruh kabel dan membuat default-dudukan default untuk menancapkan ke monting-monting adalah untuk menempelkan antena parabolic ke tower-kunci inggris atau kunci pas no 10ukuran antena parabolic-pertama potong ukuran sampai 300 cm bagi 3 sisi-putaran tengah 210 bagi 3 sisi-putaran akir 30 bagi 3 sisi-alumunium ukurannya 48,5 cm di bagi 2 yang satu 28,5 dan yang satunya 25-membuat antena dengan isi kabel rj 8upresentasi pembuatan omnialat dan bahan yang perlu digunakan-soldier untuk menyambungkan kabel dengan konnector-hitsring untuk melapisi kabel picrtail-pipa kapiler AC untuk menaruh kabel dan membuat default-dudukan default untuk menancapkan ke monting-monting adalah untuk menempelkan antena parabolic ke tower-isi kabel rj 8u untuk dijadikan antena omni adalah atau sering di sebut antena sectoral dikarenakan omni menyebarkan sinyal bukan satu arah melainkan omni menyebarkan sinyal ke seluruh arah dan jangang meletakkn omni di dekat kabel penangkal petir karena bisa-bisa omni juga ikut tersambar petir tersebutpresentasi pembuatan antena rotena atau antena kupu-kupumembuat antena rotena dengan menggunakan isi kabel rj 8u alat dan bahan untuk membuat antena rotenasoldier untuk menyatukan setiap alumunium flat yang telah di isi dengan kabel rj 8ulem tembak untuk merakatkan isi kabel rj 8u ke alumunium flatpipa kapiler acclammontingantena rotena sering di gunakan untuk melakukan pengetesan radio-radio

Perakitan Antena
1. Antena microwave jenis grid parabolic dan loop serta yagi perlu dirakit karena terdiri dari sejumlah komponen, berbeda dengan jenis patch panel, panel sector maupun omni directional
2. Rakit antena sesuai petunjuk (manual) dan gambar konstruksi yang disertakan
3. Kencangkan semua mur dan baut termasuk konektor dan terutama reflektor
4. Perhatikan bahwa antena microwave sangat peka terhadap perubahan fokus, maka pada saat perakitan antena perhatikan sebaik-baiknya fokus reflektor terhadap horn (driven antena), sedikit perubahan fokus akan berakibat luas seperti misalnya perubahan gain (db) antena
5. Beberapa tipe antena grid parabolic memiliki batang extender yang bisa merubah letak fokus reflektor terhadap horn sehingga bisa diset gain yang diperlukan.
Pointing Antena
1. Secara umum antena dipasang dengan polarisasi horizontal
2. Arahkan antena sesuai arah yang ditunjukkan kompas dan GPS, arah ini kita anggap titik tengah arah (center beam)
3. Geser antena dengan arah yang tetap ke kanan maupun ke kiri center beam, satu per satu pada setiap tahap dengan perhitungan tidak melebihi ½ spesifikasi beam width antena untuk setiap sisi (kiri atau kanan), misalkan antena 24 db, biasanya memiliki beam width 12 derajat maka, maksimum pergeseran ke arah kiri maupun kanan center beam adalah 6 derajat
4. Beri tanda pada setiap perubahan arah dan tentukan skornya, penentuan arah terbaik dilakukan dengan cara mencari nilai average yang terbaik, parameter utama yang harus diperhatikan adalah signal strenght, noise dan stabilitas
5. Karena kebanyakan perangkat radio Wireless In A Box tidak memiliki utility grafis untuk merepresentasikan signal strenght, noise dsb (kecuali statistik dan PER) maka agar lebih praktis, untuk pointing gunakan perangkat radio standar 802.11b yang memiliki utility grafis seperti Orinoco atau gunakan Wave Rider
6. Selanjutnya bila diperlukan lakukan penyesuaian elevasi antena dengan klino meter sesuai sudut antena pada station lawan, hitung berdasarkan perhitungan kelengkungan bumi dan bandingkan dengan kontur pada peta topografi
7. Ketika arah dan elevasi terbaik yang diperkirakan telah tercapai maka apabila diperlukan dapat dilakukan pembalikan polarisasi antena dari horizontal ke vertical untuk mempersempit beam width dan meningkatkan fokus transmisi, syaratnya kedua titik mempergunakan antena yang sama (grid parabolic) dan di kedua titik polarisasi antena harus sama (artinya di sisi lawan polarisasi antena juga harus dibalik menjadi vertical)

Antena Grid 2,4 GHz 24 dBi ini sering digunakan sebagai antena WLAN. Dapat digunakan pada IEEE 802.11g maupun 802.11b. Kalau ingin pasang antena nih harus pakai frekuensi yang di ijinkan kalau tidak mau di garuk sama Balmon. Dan harus pintar-pintar pointing supaya dapat strength sinyal yang bagus dan troughput yang besar.
Ada banyak pilihan untuk menggunakan antena ini. Buatan Taiwan, USA dan Korsel juga ada, tergantung selera dan kebutuhan saja.

from: fajar91.wordpress.com